PDF neuron firing phase-shifts key circadian activity neurons in Drosophila
نویسندگان
چکیده
Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.
منابع مشابه
A G Protein-Coupled Receptor, groom-of-PDF, Is Required for PDF Neuron Action in Circadian Behavior
The neuropeptide Pigment-Dispersing Factor (PDF) plays a critical role in mediating circadian control of behavior in Drosophila. Here we identify mutants (groom-of-PDF; gop) that display phase-advanced evening activity and poor free-running rhythmicity, phenocopying pdf mutants. In gop mutants, a spontaneous retrotransposon disrupts a coding exon of a G protein-coupled receptor, CG13758. Disrup...
متن کاملGW182 Controls Drosophila Circadian Behavior and PDF-Receptor Signaling
The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dep...
متن کاملRNA-Interference Knockdown of Drosophila Pigment Dispersing Factor in Neuronal Subsets: The Anatomical Basis of a Neuropeptide's Circadian Functions
BACKGROUND In animals, neuropeptide signaling is an important component of circadian timekeeping. The neuropeptide pigment dispersing factor (PDF) is required for several aspects of circadian activity rhythms in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the anatomical basis for PDF's various circadian functions by targeted PDF RNA-interference in specific classes of Droso...
متن کاملThe Neuropeptide PDF Acts Directly on Evening Pacemaker Neurons to Regulate Multiple Features of Circadian Behavior
Discrete clusters of circadian clock neurons temporally organize daily behaviors such as sleep and wake. In Drosophila, a network of just 150 neurons drives two peaks of timed activity in the morning and evening. A subset of these neurons expresses the neuropeptide pigment dispersing factor (PDF), which is important for promoting morning behavior as well as maintaining robust free-running rhyth...
متن کاملWidespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging
The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a sub...
متن کامل